skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nyland, Kelsey E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 8, 2026
  2. Abstract Despite strong terrain influences on the climate of the Appalachian Highlands in the eastern USA, few attempts have been made to systematically collect air and soil temperature data from summits and other high-elevation sites in this region. This paper reports on the Appalachian Highlands Environmental Monitoring (AHEM) mesoscale climate network, a series of 20 high-elevation sites recording temperature at hourly intervals from 1996 to 2008 on Appalachian summits along a 1500 km transect extending from Maine to North Carolina. Observations included air temperature, ground surface temperature, and soil temperature at 25 cm depth. Data were analyzed with respect to four issues: (1) accuracy of air temperature estimates and comparisons with previous studies; (2) relations between the altitude of the 0 °C mean annual air temperature and latitudinal position; (3) variations in frequency distributions of freeze–thaw days with latitude; and (4) the accuracy of an existing soil temperature classification scheme in the Appalachians. Analytic results include: (1) topographically informed interpolation techniques provide more accurate temperature estimates than traditional methods; (2) the elevation of the 0 °C mean annual air temperature decreases systematically with increasing latitude; (3) the frequency distributions of freeze–thaw days are related directly to latitudinal position; (4) classifications of mean annual soil temperature based on data from the 25 cm level are in general agreement with an existing U.S. Department of Agriculture soil-temperature map suggesting permafrost underlying high-elevation locations in the northern Appalachian Highlands.. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Free, publicly-accessible full text available March 4, 2026
  4. Traditional Iñupiaq sigḷuaq are cellars excavated into permafrost for storage of large quantities of game, fish, and other foodstuffs harvested for subsistence. Permafrost provides both a cultural and regulatory ecosystem service to Arctic peoples. A cellar thermal monitoring program in Utqiaġvik (formerly Barrow), Alaska, documented catastrophic flooding, collapses, and other issues in these cellars related to warming climatic conditions, community functions, and development. This paper provides an update on the Utqiaġvik monitoring program, which was operational from 2005 to 2019. All five monitored cellars exhibited stable to warming mean annual internal temperatures over the period of observation. Two cellars flooded, another was abandoned because of sloughing walls, and two were functioning until the COVID-19 pandemic. Based on experiences gained from the 14-year Utqiaġvik monitoring program, we conduct a vulnerability assessment using the source-pathway-receptor-consequence (SPRC) model and identify several vulnerability reduction measures. We recommend the SPRC model to aid evaluation of specific vulnerabilities of cellars and other traditional frozen infrastructure, and to improve future monitoring methods and products through increased community participation. Any attempt to provide data for community-resilience decisions should start with identifying and communicating process components, thereby bridging stakeholder learning and responses (their “heuristics” in the SPRC model) and science-based knowledge. 
    more » « less
  5. Mongolia’s northernmost province, Khövsgöl Aimag, famous for its massive Lake Khövsgöl set among the mountainous steppe, taiga, and tundra forests, increasingly attracts both domestic and international tourists. Before the COVID-19 pandemic, Mongolia received over 500,000 tourists annually. The aimag is also home to Indigenous, nomadic Dukha reindeer herders and semi-nomadic Darkhad cattle herders. Using a multidisciplinary approach, this study uses an analytical hierarchy process to map areas in Khövsgöl Aimag, where the infrastructure, including buildings, dwellings, formal and informal roads, and pastureland, is subject to geohazards. The hazards of interest to this mapping analysis include mass wasting, flooding, and permafrost thawing, which threaten roads, pastures, houses, and other community infrastructure in Khövsgöl Aimag. Based on the integrated infrastructure risk map, an estimated 23% of the aimag is at high to very high risk for localized geohazards. After a discussion of the results informed by the interviews, mobile ethnographies, and local and national land use policies, we postulate that communities exercising more traditional nomadic lifestyles with higher mobility are more resilient to these primarily localized geohazards. 
    more » « less
  6. Siberian taiga is subject to intensive logging and natural resource exploitation, which promote the proliferation of informal roads: trails and unsurfaced service roads neither recognized nor maintained by the government. While transportation development can improve connectivity between communities and urban centers, new roads also interfere with Indigenous subsistence activities. This study quantifies Land-Cover and Land-Use Change (LCLUC) in Irkutsk Oblast, northwest of Lake Baikal. Observations from LCLUC are used in spatial autocorrelation analysis with roads to identify and examine major drivers of transformations of social–ecological–technological systems. Spatial analysis results are informed by interviews with local residents and Indigenous Evenki, local development history, and modern industrial and political actors. A comparison of relative changes observed within and outside Evenki-administered lands (obshchina) was also conducted. The results illustrate: (1) the most persistent LCLUC is related to change from coniferous to peatland (over 4% of decadal change); however, during the last decade, extractive and infrastructure development have become the major driver of change leading to conversion of 10% of coniferous forest into barren land; (2) anthropogenic-driven LCLUC in the area outside obshchina lands was three times higher than within during the980s and 1990s and more than 1.5 times higher during the following decades. 
    more » « less
  7. Rapid Arctic warming is expected to result in widespread permafrost degradation. However, observations show that site-specific conditions (vegetation and soils) may offset the reaction of permafrost to climate change. This paper summarizes 43 years of interannual seasonal thaw observations from tundra landscapes surrounding the Marre-Sale on the west coast of the Yamal Peninsula, northwest Siberia. This robust dataset includes landscape-specific climate, active layer thickness, soil moisture, and vegetation observations at multiple scales. Long-term trends from these hierarchically scaled observations indicate that drained landscapes exhibit the most pronounced responses to changing climatic conditions, while moist and wet tundra landscapes exhibit decreasing active layer thickness, and river floodplain landscapes do not show changes in the active layer. The slow increase in seasonal thaw depth despite significant warming observed over the last four decades on the Yamal Peninsula can be explained by thickening moss covers and ground surface subsidence as the transient layer (ice-rich upper permafrost soil horizon) thaws and compacts. The uneven proliferation of specific vegetation communities, primarily mosses, is significantly contributing to spatial variability observed in active layer dynamics. Based on these findings, we recommend that regional permafrost assessments employ a mean landscape-scale active layer thickness that weights the proportions of different landscape types. 
    more » « less
  8. Food cellars, otherwise referred to as ice or meat cellars, (lednik in Russian, k’aetyran in Chukchi, siġļuaq in Iñupiaq, and siqlugaq in Yupik) are a natural form of refrigeration in permafrost or seasonally frozen ground used to preserve, age, and ferment foods harvested for subsistence, including marine mammals, birds, fish, and plants. Indigenous peoples throughout the Arctic have constructed cellars in frozen ground for millennia. This paper focuses on cellars in Russian and American coastal and island communities of the Bering Strait, the region otherwise known as Beringia. This area has a unique, culturally rich, and politically dynamic history. Many traditions associated with cellars are threatened in Chukchi communities in Russia because of the impacts of climate change, relocation, dietary changes, and industrial development. However, even with warmer temperatures, cellars still provide a means to age and ferment food stuffs following traditional methods. In cooperation with local stakeholders, we measured internal temperatures of 18 cellars in 13 communities throughout the Bering Strait region and northern Alaska. Though cellars are widely used in permafrost regions, their structure, usage, and maintenance methods differ and exhibit influences of local climates, traditions, and economic activities. Monitoring internal temperatures and recording structural descriptions of cellars is important in the face of climate change to better understand the variety and resilience of living adaptations in different cold regions. 
    more » « less